Category: Upper Extremity Disabilities

Powered mobility training device for toddlers

AbleData does not produce, distribute or sell any of the products listed on this website, but we provide you with information on how to contact manufacturers or distributors of these products. If you are interested in purchasing a product, you can find companies who sell it below.

Powered mobility training device for toddlers is a mobility device designed for use by young children.  The device consists of a 4-wheel platform, in which two are drive wheels controlled by a standard 9-pin direction input interface. This instructable offers two approaches to build this device. One approach uses an off the shelf baby cruiser as the platform, while the other requires a DIY platform. The second, DIY approach, is the one this instructable will utilize. Both approaches require a standard car seat for the child to use the device.

Technical Specifications: 

Step 1: Parts List

Please refer to the website for the complete parts list. Do note that the parts list is not exhaustive. Things that are NOT listed include:

  1. Tools and equipment that you might require to assemble the parts, such as soldering irons and screwdrivers.
  2. Standard fasteners such as screws, bolts and nuts.

The following steps are a guideline to construct this device. Please feel free to modify the size and design of the device to fit your purpose.

Step 2: Electronics: Introduction

The electronics are crucial to the operation of the device, and this is likely the most complicated step of the instructable. To begin this step, please ensure that you have a good soldering iron, as well as a roll of solder. Other equipment you might find useful includes disordering braids to help remove bad solders, and a set of vices to help you hold the part in place. We will be using an Arduino Uno as the main microcontroller. This is the device, which the code will be uploaded. The two motor shields will be the  interface between the Arduino board and the motors. The reason why they are called "shields”, is because they were designed to be stacked on top of the Arduino Uno, or on each other; that is precisely what we will be doing. Look at the motor shields. You should see two sets of two-column pins in the middle of the board, labeled DIR and PWM.

  1. For the first board, place a jumper connector (please refer to the image, the image is circled in red) at row labeled D2 for DIR, and row labeled D3 for PWM.
  2. For the second board, place a jumper connector (circled red in the image) at row labeled D4 for DIR, and row labeled D5 for PWM.

 

Step 3: Electronics: Circuit Board

In this step, you will be constructing your own, "shield" to wire up the electronics. Before you begin, cut the copper prototyping board to size, i.e. 22 holes x 35 holes. Follow the illustrations for soldering the components and wires on the copper prototyping board. The placement of the components are shown on the illustration of the bottom of the board, while the points to solder are indicated by the illustration of the top of the board with the white pill shapes. Ensure that the areas indicated by the pill shapes are soldered together. Use the solid core wires for all wiring, with the exception of the wires going to the battery.

These are the connections that will be established:

  1. D8, D9, D10, D11, Ground to Controller 9 Pin input.
  2. Current Sensor A: Ground to Ground, VCC to 5V, Out to A1.
  3. Current Sensor B: Ground to Ground, VCC to 5V, Out to A0.
  4. Potentiometer: Left pin to Ground, Right pin to 5V, Middle pin to A3.

 

Step 4: Electronics: Direction Buttons

The input device requires a DB9 connection for it to deliver the correct input. Enabling Devices carries a variety of options for different capabilities: https://enablingdevices.com/catalog/capability_switches. Connect your controller to the DB9 connector. Using a multimeter to check for connectivity, ensure that:

  1. D8 is connected to Forward
  2. D9 is connected to Reverse
  3. D10 is connected to Right
  4. D11 is connected to Left

 

Step 5: Electronics: Power

Connect the voltage regulator to the circuit board as per the illustration in step 3 if you have not done so. Plug the battery to the circuit using the battery cable provided, and switch on the circuit. You should see the voltage regulator's display light up, indicating the input voltage (see image). Press the "O" button on the voltage regulator, this displays the output voltage. Press either "+" or "-" to add or subtract the number till the display reads 9.0. This ensures that 9V is supplied to the Arduino Board. Turn off the circuit. Plug the barrel jack from the voltage regulator into the Arduino Board. Following the illustration in step 3, connect the ground (black) cables from the circuit board to the - (negative) input on the motor shields, and the power (red) cables from the circuit board to the + (positive) input on the motor shields. Turn on the circuit. Press the A button on the motor shields, you should see a red LED labeled A light up. Do the same for the B button, you should see a red LED labeled B light up. You have now successfully powered the electronics!

Step 6: Electronics: Current Sensors & Motors

We will now prepare the wiring to connect the motor shield to the motors. To ensure that the 2 drive motors drive consistently, we will run one of the wires going to each motor through a current sensor. Prepare 2 x 4 inch length of 16 gauge red primary wire. Connect them to the Aoutputs on the motor shields. Next, we will solder them to the corresponding current sensors:

  1. Solder the wire from the motor shield with D2 connected to DIR to the hole at the start of the arrow on Current Sensor A.
  2. Solder the wire from the motor shield with D4 connected to DIR to the hole at the start of the arrow on Current Sensor B.

Prepare 2 x 2 feet length of 16 gauge red primary wire, and 2 x 2 feet length of 16 gauge black primary wire. Solder the ends of the red primary wire to the holes at the end of the arrow for each current sensor. Connect the black primary wire to the B outputs on each motor shield. At the ends of these long primary wires, attach the female spade connectors. These will connect to the motors. Insert the shields and circuit board on top of one another. The Arduino Uno board forms the bottom layer, followed by the two motor shields, and lastly the circuit board goes on top. Ensure that you push the male header pins into the female headers, and make sure that all the pins are aligned. Make sure that you group the correct pair of wires together. Ensure that the red wire from Current Sensor A is paired with the black wire from the motor shield with D2 connected to DIR, and that the red wire from Current Sensor B is paired with the black wire from the motor shield with D4 connected to DIR.

Step 7: Electronics: Upload code

Upload the following code to the Arduino Uno board. You can find instructions on how to set up your Arduino here:https://www.arduino.cc/en/Guide/HomePage

Step 8: Electronics Box

If you want, you can package the electronics in a box. Attached is a pdf file for a box design that you can laser cut out of a 0.12" acrylic sheet. Remember to insulate any metal parts near the electronics to minimize the chance of short-circuiting.

Step 9: Cart: Overview of the Cart

Two carts were made to secure a child's car seat to the powered wheels. A ¾ inch plywood sheet was used as the foundation for both carts. One cart was adapted to fit onto an existing product, the Travelmate Deluxe Cruiser, and the other cart was made with 2x4's attached to the plywood. These are minimal designs and there is much room for variation based on specific additional needs. The ¾ inch plywood was cut to approximately 14x31 inches on both carts. The 14-inch width was used based on the width of the Travelmate Deluxe Cruizer and worked for 2x4 cart to secure the child's car seat. The length of 31 inches was used to utilize fastening to plastic holes on the bottom of the Travelmate Deluxe Cruiser and overhang approximately 7 inches to accommodate the electronics box and battery. The image above provides an overview of the assembly and each component for the 2x4 cart.

Step 10: Cart: Cart Underside Assembly

Starting with four 2x4's (step 1) attach a small plywood piece to mount the front casters(step 2). Next attach the foundation plywood with the motor assemblies(step 3). Finally attach the front casters inset at least a few inches to allow for clearance of the pvc tray holder in a later stage(step 4). This may be a good time to connect and test the wires to the motors that will run to the green current sensors in the step 3 graphic of the bottom circuit diagram. Once tested label the wires since the connection order will affect the controller input for direction commands to the motors. For instance, if the controller inputs for forward and reverse are opposite you will need to switch the connections on the motor wire terminals. The cut pipe holders(described in next step) can be attached at this point as well.

Step 11: Cart: Attaching the car seat

To secure the cart seat we attached four eye lag screws to the top and sides of the 2x4 base. The existing car seat connections were used when possible but an adjustable strap secured with carabiners had to be made for securing the front of the seat. With the seat secured you can determine the proper size for next step making the PVC tray holder and footrests. The battery and electronics box can be added and secured with Velcro or straps.

Step 12: Cart: PVC Tray Holder

The author has built a few variations of the tray holders out of 1 inch PVC plumbing pipe and standard T and 45/90 degree joints. The lengths and configurations depend on the size of the child and any specific accommodations for limitations of mobility or body support. A tray holder is used to support the enabling device controller that will be used for directional input to the cart. The PVC structure is connected to the cart with pipe holders modified to allow for a friction fit. This allowed a relatively easy attachment and detachment from the cart to allow entry into the car seat. We added a footrest for larger children or to attach a foot pedal input on one of the PVC tray holders

Step 13: Cart: Travelmate Baby Cruizer

The construction of the cart is similar using the Baby Cruiser but the cost increases significantly. Some advantages are the existing car seat attachment straps, front casters, and assistive handle.  Additional modifications can be made by removing the rear wheel and securing the foundation platform onto the underside of the Baby Cruiser. Next, mark the existing holes on the underside of the Baby Cruiser with chalk or wax pencil. Then press the plywood against it will transfer the hole locations for pre drilling the plywood. Use your hands tighten the screws to avoid stripping the plastic.

Available

Price Check
Price: 
0.00
as of: 
01/11/2016
Additional Pricing Notes: 
Cost of supplies and materials.
Seller(s): 
Powered mobility training device for toddlers